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Abstract

The Great Recession, the Great Depression, and the Japanese slump of the 1990s

were all preceded by periods of major technological innovation, which happened about

10 years before the start of the decline in economic activity. In an attempt to under-

stand these facts, we estimate a model with noisy news about the future. We find

that beliefs about long-run income adjust with an important delay to shifts in trend

productivity. This delay, together with estimated shifts in the trend of productivity

in the three cases, are able to tell a common and simple story for the observed dy-

namics of productivity and consumption on a 20 to 25 year window. Our analysis

highlights the advantages of a look at this data from the point of view of the medium

run.

Keywords: Aggregate productivity, permanent income, learning.

JEL codes: E21, E27, E32, N10.

∗Georgetown University and EIEF. This is a revised version of the paper: “Technological Revolutions
and Debt Hangovers: Is There a Link?” First draft: December, 2012. We benefited from useful feedback
from Mark Aguiar, David Backus, Susanto Basu, Paul Beaudry, Olivier Blanchard, Emine Boz, Claire
Brennecke, Robert Chirinko, Chris Faulkner-MacDonagh, Jean Flemming, Gita Gopinath, Pierre-Olivier
Gourinchas, Aubhik Khan, Jennifer La’O, Francesco Lippi, Virgiliu Midrigan, Ezra Oberfield, Guillermo
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“Shifts in the economy are rarely forecast and often not fully

recognized until they have been underway for some time.”

Larry Summers, Financial Times, March 25th, 2012

1 Introduction

A medium-run look at the three most important private-debt recessions in

developed economies reveals that they were all preceded by periods of great

technological innovation and economic transformation. Specifically, the recent

Great Recession in the United States was preceded by a technological revolu-

tion, happening in the late 1990s, related to Information Technology (hence-

forth IT) (Greenwood and Jovanovic 1999; Hobijn and Jovanovic 2001; Pastor

and Veronesi 2009). Similarly, the Japanese slump of the 1990s was preceded

by a period of unprecedented industrial innovation in the 1980s. During this

period, Japanese corporations developed several key electronic products with

great success.1 We view this period as containing the elements of a technological

revolution, which in the particular case was mostly concentrated in Japan. Fi-

nally, before the Great Depression, roughly between 1915 and 1925, the United

States witnessed the so-called 2nd Industrial Revolution, a period of important

industrial developments (David and Wright 2000).2

Thus, in each of these cases there seems to be roughly a 10-year gap be-

tween the technological revolution and the start of the economic slump. At

face value, this suggests the existence of slow-moving, joint dynamics of tech-

nological progress and economic activity, common to all three episodes. In this

paper, we investigate whether there is indeed evidence of these dynamics in the

data, and make an effort to characterize them within a simple and intuitive

framework. We take a simple permanent income model in which a representa-

tive agent learns slowly about his future income. Future income is determined

by technological progress, which in turn can be gauged from the trend of pro-

ductivity. However, detecting changes in the trend of productivity can be a

challenging task for the agent due to imperfect information. Consumers that

1The two main players here were the Sony Corporation and JVC, who developed a large number of
these electronic products. To name a couple of salient examples, consider the Walkman, the VHS, or the
Betamax.

2The key general purpose technology here was the combustion engine. Among other things, this tech-
nology made possible the mass production of automobiles for the American household by the Ford Motor
Company. This also brought drastic improvements in management as, for instance, the use of the moving
assembly line (Bardou et al. 1982).
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update their beliefs on the basis of fairly noisy signals adjust their behavior

gradually. This allows us to fit the slow-moving dynamics in spending present

in the data.

In this exercise, our main object of interest is the beliefs about long-run in-

come determined by learning, or “beliefs about the long run”. When we look at

the data through the lens of the model, we find that in the three cases the joint

dynamics of productivity and beliefs about the long run can be characterized by

a slow-moving cycle. This cycle can be summarized by the following sequence

of events. First, there was an initial increase in trend productivity, which was

contemporaneous to the waves of innovation mentioned previously. Second, this

pickup of productivity generated an increase in beliefs about the long run. This

increase in beliefs increased consumption. Importantly, this (rational) “wave of

optimism” came some years after the initial increase in trend productivity. The

reason is a delay in the adjustment of beliefs due to noisy information. Third,

there was a decline in trend productivity, probably caused by a slowdown in

the pace of innovation.3 Fourth, when consumers received enough informa-

tion to learn about the drop in trend productivity, they decreased their beliefs

about the long run. This “wave of pessimism” generated a persistent decline in

consumption.4

Our model has two main ingredients. The first one is the presence of both

permanent and transitory shocks to productivity (Aguiar and Gopinath 2007;

Justiniano, Primiceri, and Tambalotti 2010). As Aguiar and Gopinath, we

consider an open economy framework and use permanent shocks to generate

shifts in trend productivity. We complement their analysis by deriving a closed-

form solution to study these effects, and extend it to the study of the three

episodes mentioned above. The second one is the presence of news about the

future (Beaudry and Portier 2006; Jaimovich and Rebelo 2009; Barsky and Sims

2012). The novelty in our framework is the presence of noisy news (Blanchard,

L’Huillier, and Lorenzoni 2013), together with agents’ rational reaction to this

noise in the news. However, our focus is on the effect of shifts in the trend of

productivity, instead of the effect of noise shocks.

To estimate shocks to the trend of productivity, we use a tractable frame-

3This finding is closely related to the evidence recently collected by Fernald (2012a), who in the case of
the Great Recession documents that the growth of U.S. labor productivity slowed down after 2004. The
slowdown was more pronounced in IT-intensive industries. For more details, see Section 3.

4Using a different approach, Eggertsson (2008) emphasizes the role of expectations in the recovery out
of the Great Depression. In particular, he emphasizes the role of a policy-driven shift in expectations that
took place when Roosevelt took office at the end of 1932.
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work in which beliefs about the long run drive the behavior of consumption.

As econometricians, the permanent income logic together with rational expec-

tations allow us to infer the underlying movements in trend productivity by

looking at consumption. Here, we borrow the basic idea of an important body

of work on household income dynamics, e.g. Blundell and Preston (1998), or

Blundell, Pistaferri, and Preston (2008). Within this literature, Guvenen (2007)

uses a life cycle learning model.

Our model has implications for the dynamics of debt, determined by the

difference between households’ spending and income. This connects our work

to a growing literature analyzing the leveraging and deleveraging of U.S. house-

holds (Midrigan and Philippon 2011; Justiniano, Primiceri, and Tambalotti

2014a, 2014b). In some sense, our goal is less ambitious because we use a

simpler model and solve it using a first order log-linear approximation. There-

fore, we do not intend to provide a full quantitative account of the leveraging

and deleveraging. At the same time, taking a longer-run perspective allows

us to clarify that slow-moving movements in productivity explain part of the

slow-moving dynamics of debt.

Specifically, we proceed as follows. First, we estimate our model through

standard methods and then use the variance decomposition of beliefs at differ-

ent horizons in order to gauge which of the shocks present in the model explain

its variability on the medium run. We define the “medium run” as an horizon

of about 5 years or more after the impulse of a particular shock. This decom-

position indicates that most of the variability of consumption in the medium

run is explained by permanent productivity shocks.5

Having established the importance of permanent shocks to understand the

medium-run dynamics of the beliefs, we estimate these shocks using a Kalman

smoother. We then feed the estimated permanent shocks into the model and

shut down other shocks. We do this in order to simulate the associated beliefs

about the long run, which we label “model-predicted beliefs about the long

run”. We then perform an out-of-sample check of these model-predicted beliefs

by comparing them to survey evidence for the U.S. economy, 1994–2010. Notice

that in this exercise we shut down all other shocks in the model.6 We find that

according to both the model-predicted beliefs about the long-run and the survey,

5Pintus and Suda (2013) also stress the importance of gradual learning to understand the recent recession
in the U.S.

6Our empirical exercise is related to the theoretical contribution by Boz (2009), in which optimism
following a “miracle” performance can lead to a downturn. Independently, Piazza (forthcoming) and
Pintus and Wen (2013) model a similar interaction between development, demand, and credit.
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the U.S. consumer was most optimistic about his long-run income around 2004.

In order to shed light on the properties of the data that deliver the shape of

the model-predicted beliefs about the long run, we also present some reduced-

form evidence by focusing on the observed dynamics of the ratio of productivity-

to-consumption. We argue that – within our estimated model – this ratio is

particularly informative for the estimation of permanent productivity shocks.

Indeed, in the model, productivity determines income, and beliefs about the

long run determine consumption. Therefore, given the variance decomposition

of consumption, the joint medium-run evolution of these two variables should

be determined by permanent technology shocks. Accordingly, we find that this

ratio has a similar medium-run shape in the three cases.7

Altogether, the exercises we perform deliver three main substantive results.

First, there is a significant delay in the adjustment of beliefs about the long

run. The reason is the estimated amount of noise in the information consumers

receive about future income, which is quite large. We quantify this delay by

computing the half-life of beliefs after an impulse to the trend-growth of pro-

ductivity in our estimated model. The exact measure of the delay varies from

one episode to the other, but in all three cases we find a sizeable delay of at

least 1 year. Second, the medium-run trend of the productivity-to-consumption

ratio computed using an HP-filter has the shape of an “up-and-down wave”:

first increases, then decreases, and then again increases, reverting back to its

value at the start of the cycle. Although the whole length of this cycle varies

from case to case, it seems to be of 20 to 30 years. As argued below, in either

the “no-news” or perfect foresight benchmarks, this ratio would have a different

shape. Therefore, our learning model is a way of accommodating this partic-

ular feature of the data. Third, a simulation of debt dynamics in our model

indicates that the leveraging and deleveraging of households lagged the up-and-

down movements in productivity. The reason was the delay in the adjustment of

beliefs. Moreover, this simulation indicates that households were leveraging up

precisely when productivity was slowing down. Thus, they accumulated more

debt than intended because they failed to immediately recognize the slowdown

in productivity.

In the literature, little attention has been devoted to the study of medium-

7This historical stylized fact is akin to the well-known work by Reinhart and Rogoff (2008,2011). How-
ever, we do not seek to address the abrupt financial meltdowns emphasized there. Reinhart and Reinhart
(2010) look at a number of other aggregate indicators as unemployment, housing prices, inflation and
credit, using a reduced form approach. See Syverson (2013) for other interesting parallels between the
1920s and the 1990s.
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term aggregate consumption dynamics, as one can infer from the large literature

on empirical DSGEs which focuses on the short run. A noticeable exception

is the paper by Comin and Gertler (2006). They generate medium-term dy-

namics using an endogenous determination of productivity through the explicit

modeling of R&D. In the case of our paper, we simplify the determination of

productivity by making it exogenous, and instead focus on the dynamics of

learning. These turn out to generate smooth, medium-term, dynamics of con-

sumption. Also, Section 4 establishes a further link to Comin and Gertler’s

work by the use of filtering techniques to look at the medium-term dynamics

of time series data.

Our application provides an interpretation of consumption disasters based

on shifts in beliefs about the long run. A key reference here is Nakamura,

Steinsson, Barro, and Ursua (2013) who, using different techniques, separate

the large short-run drop from the sustained long-run impact of disasters.8 Our

paper focuses solely on the medium-run properties of consumption, and links

them to underlying movements in trend productivity using a learning channel.

The rest of the paper proceeds as follows. We first present the model (Section

2). We then discuss its estimation and present these results (Section 3). Here,

we generate the model-predicted beliefs about the long run, and perform the

out-of-sample check. We then turn to the properties of the productivity-to-

consumption ratio in the data (Section 4). Afterwards we use our model to

analyze the implication of our results of household debt (Section 5). We then

conclude (Section 6). The Appendix contains several proofs and a detailed

description of our data. The Supplementary Material presents a number of

supplementary results.

2 The Model

2.1 Productivity Process and Information Structure

We model an open economy similar to Aguiar and Gopinath (2007), adding a

“news and noise” information structure (Blanchard, L’Huillier, and Lorenzoni

2013, henceforth BLL).9 Specifically, productivity at (in logs) is the sum of two

8For related work on rare disasters, see Barro (2006) and Barro and Ursua (2011).
9Boz, Daude, and Durdu (2011) use a similar framework. We simplify it further by removing labor

supply and capital. Those extra ingredients do not change anything to our analysis, as we explain below
(p. 11).
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components, permanent, xt, and transitory zt:

at = xt + zt . (1)

Consumers do not observe these components separately. The permanent

component follows the unit root process

∆xt = ρx∆xt−1 + εt . (2)

The transitory component follows the stationary process

zt = ρzzt−1 + ηt . (3)

The coefficients ρx and ρz are in [0, 1), and εt and ηt are i.i.d. normal shocks

with variances σ2
ε and σ2

η. Similar to BLL, we assume that

ρx = ρz ≡ ρ , (4)

and that the variances satisfy

ρσ2
ε = (1− ρ)2 σ2

η , (5)

which implies that the univariate process for at is a random walk, that is

E[at+1|at, at−1, ...] = at . (6)

This assumption is analytically convenient and broadly in line with produc-

tivity data. To see why this property holds, note first that the implication is

immediate when ρ = ση = 0. Consider next the case in which ρ is positive and

both variances are positive. An agent who observes a productivity increase at

time t can attribute it to an εt shock and forecast future productivity growth

or to an ηt shock and forecast mean reversion. When (4) and (5) are satisfied,

these two considerations exactly balance out and expected future productivity

is equal to current productivity.10

Consumers have access to an additional source of information, as they ob-

serve a noisy signal about the permanent component of productivity. The signal

is given by

st = xt + νt , (7)

10See BLL for the proof.
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where νt is i.i.d. normal with variance σ2
ν .

We think of εt as the “news” shock because it builds up gradually and thus

provides (noisy) advance information information about the future level of pro-

ductivity (through the signal (7)). Our focus throughout the paper is on the

dynamics implied by this shock. It is useful to say a word about the methodolog-

ical role of the signal (7) in our exercise. It plays a key role in our identification

by providing an extra source of information to consumers regarding the per-

manent component. Indeed, through this assumption the econometrician will

be able to make inferences about trend-productivity by looking at the behavior

of consumption. As mentioned in the introduction, this connects our paper to

the work of Blundell and Preston (1998) and Blundell, Pistaferri, and Preston

(2008). (Our identification strategy is discussed in detail below.)11

2.1.1 Slow Adjustment of Beliefs

Here we focus on an important property of the signal extraction problem for

our purposes. Agents optimally form beliefs about the permanent component

xt using a Kalman filter.12 Then, they form beliefs about the future path of xt.

The following definition is useful to make these ideas precise.

Definition 1 (BLR) Given information at time t, the agent’s best estimate of

the productivity in the future is

lim
τ−→∞

Et [at+τ ] =
Et [xt − ρxt−1]

1− ρ
=
xt|t − ρxt−1|t

1− ρ
, (8)

where xτ |t denotes the conditional expectation Et[xτ ] of xτ on information avail-

able at time t. We call the estimate of long-run productivity, beliefs about the

long run (BLR) and denote it by xt+∞|t.

The first equality is proved in the Appendix and the second equality comes

directly from the definition of xτ |t. In Proposition 1 below we show that these

BLR will determine consumption.

Because of noisy information, agents will be slow to adjust their beliefs

xt+∞|t. In particular, they will be slow to adjust their beliefs following a per-

11Related and important contributions on the impact of noise, or more broadly, changes in expectations
are by Angeletos and La’O (2009,2013). As it will become clear, our noisy news approach is different,
especially because it captures medium-term fluctuations once the model is estimated. Forni, Gambetti,
Lippi, and Sala (2013b) also use the term “noisy news”, but they use a different specification of the
information structure. See also Forni et al. (2013a).

12The construction of the filter is standard, but see p. 13 for more details on this.
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manent shock εt.

Definition 2 (Delayed adjustment of beliefs) After a permanent shock, εt =

1, under perfect information, BLR jumps immediately to the long-run level

1/(1 − ρ) and stays at that level in the absence of future shocks. However,

under imperfect information, it takes time for the BLR to reach the long-run

level. We define the delay by the time it takes BLR to reach half of the long-run

level.

2.2 Consumption, Production and Net Exports

We now describe the rest of the model. A representative consumer maximizes

E

[
∞∑
t=0

βt logCt

]
where E[ · ] is the expectation operator conditional on information available

contemporaneously. The maximization is subject to

Ct+Bt−1= Y t+QtBt , (9)

where Bt is the external debt of the country, Qt is the price of this debt,

and Yt is the output of the country.

Output is produced using only labor through the linear production function:

Yt = AtN , (10)

where At = eat . We abstract from fluctuations on employment, i.e. the

consumer supplies labor N inelastically.13 The resource constraint is

Ct +NXt = Yt .

The price of debt is sensitive to the level of outstanding debt, taking the form

used by Schmitt-Grohe and Uribe (2003), and Aguiar and Gopinath (2007),

among others:

1

Qt

= Rt = R∗ + ψ
{
e
Bt
Yt
−b − 1

}
, (11)

13This approach is, to some extent, justified by our focus on the medium-run. However, we have used
labor supply in previous versions of this model and obtained very similar results. We comment more on
this feature of the model below (p. 11).
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where b represents the steady state level of the debt-to-output ratio.14

The only first-order conditions from the optimization problem of the con-

sumer is:
1

Ct
= βRtEt

[
1

Ct+1

]
, (12)

In order to log-linearize the model, we define four endogenous variables ct,

rt, bt, and nxt as follows:

ct ≡ log (Ct/At)− log (C/A) ,

rt ≡ logRt ,

and

bt ≡
Bt

Yt
− b ,

nxt ≡
NXt

Yt
− NX

Y
.

In the definition of ct, we need to use the ratio of Ct over At to ensure

stationarity, and C/A is the steady-state value of this ratio. Similarly, NX/Y

is the steady-state value of the net exports-to-output ratio. In order to examine

the dynamics of consumption, we also define another variable which is the log-

deviation of consumption:

ĉt = ct + at .

In the Supplementary Material, we derive the log-linearization of the equi-

librium. This equilibrium is given by the equations for the shock processes (1),

(2), and (3), and other four equations:

ct = −rt + Et[ct+1 + ∆at+1] , (13)

rt = ψ · bt , (14)

ct +
1

C/Y
nxt = 0 , (15)

14It is straightforward to generalize our model to a two-country economy, and our main results do not
change in that case. See the discussion in Appendix C.
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nxt = bt−1 − βbt +
1− C/Y

1− β
(−∆at + βrt) . (16)

This model admits a closed-form solution. It is presented in Appendix B.

To illustrate the effect of a permanent shock on the endogenous variables of

this system, we parameterize the model as follows. The period length is one

quarter. The discount factor β is set at 0.99. The elasticity of the interest

rate, ψ, is set to a low value, 0.0010, following previous literature (Neumeyer

and Perri 2004; Schmitt-Grohe and Uribe 2003; Aguiar and Gopinath 2007).

Under this common parametrization, BLR is the main driver of consumption,

as established by the following proposition.

Proposition 1 As β −→ 1, and ψ/(1 − β) −→ 0, consumption is only a

function of BLR. Specifically,

ĉt =
1

C/Y
xt+∞|t .

The proof is in the Appendix. In Cao and L’Huillier (2014a) (available on

our webpages) we prove a version of this theorem for a more general model that

includes labor supply and capital. Therefore, for the standard parametrization

in the literature, including those ingredients in our framework does not change

our results. Our focus on consumption finds empirical support in the work by

Mian and Sufi (2012), which provides disaggregated evidence on the role of

consumption in the U.S. economic slump.

The rest of the parameters is taken from the estimation of the model for

the United States (1990–2013) below. The parameter ρ is set at 0.97, implying

slowly building permanent shocks and slowly decaying transitory shocks. The

standard deviation of productivity growth, σa, is set at 0.64. These values for ρ

and σa yield standard deviations of the two technology shocks, σε and ση, equal

to 0.02% and 0.63%, respectively. The standard deviation of the noise shock,

σν , is set to 7.39%, implying a fairly noisy signal.

Figure 1 shows a simulation of the model for these parameter values. The fig-

ure shows the responses of productivity at, net exports nxt, and debt-to-output

ratio bt, to a one-standard deviation increase in εt (the permanent technology

or “news” shock). The time unit on the x-axis is one year (four quarters). The

scale of productivity is relative percentage deviations from steady state. The

scale of both net exports and the debt-to-output ratio are absolute percentage

deviation from the steady state value of net exports-to-output, NX/Y , and
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debt-to-output, b.

Figure 1: Impulse Response Functions to Permanent Technology Shock
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exports and the debt-to-output ratio. The time unit on the x-axis is one year (four
quarters).

In response to a one-standard-deviation increase in εt, the permanent tech-

nology shock, productivity increases slightly on impact, and then gradually

continues to increase until it reaches a new long-run level. This sustained in-

crease is slow; in fact, half of the productivity increases are reached only after

6 years. Initially, net exports rise, mainly because productivity increases faster

than beliefs about long run productivity. This is a reflection of the high amount

of noise in this simulation. After 3 years net exports fall, because agents have

received enough “news” and a standard income effect kicks in. This is trans-

lated into a sharp accumulation of external debt. In the long run, productivity

reaches a new level (at 0.63) and net exports and the debt-to-output ratio go

back to zero.

3 Estimation

In this section we first explain how we estimate the model. We then show

the results for the Great Recession, and we perform an out-of-sample check

of this estimation by comparing the estimated model-predicted BLR to survey

evidence. We then show the results for Japan and the Great Depression.
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3.1 Data Sets and Estimation Procedure

Data. Our data set includes series on productivity, TFP, consumption, and

net exports. We use quarterly data. The series for the Great Recession were

obtained from the Bureau of Economic Analysis and the Bureau of Labor Statis-

tics. The series for Japan were obtained from the OECD.

In the case of the Great Depression, we have data for the components of GDP

from the Gordon-Krenn data set.15 Gordon and Krenn (2010) used the Chow

and Lin (1971) method for interpolating annual national accounts series and

obtain cyclical variation at quarterly frequency, thereby obtaining an estimated

series for GDP components. In order to obtain a series for labor productivity,

we obtained an estimate for GDP from the Gordon-Krenn data set, and we

used the Kendrick (1961, Appendix A, Table XXIII, 2nd column) data set for

employment, using a linear interpolation out of the annual series.

The Data Appendix contains further details on the data used and the con-

struction of the variables.

Procedure. For our baseline estimations, we fix β and ψ. The discount

factor β is set at 0.99. ψ is set to low value, 0.0010, following previous liter-

ature (Neumeyer and Perri 2004; Schmitt-Grohe and Uribe 2003; Aguiar and

Gopinath 2007). We estimate the remaining parameters as described below.

Notice, given the random walk assumption (6) for at, σε and ση are determined

by ρ and σa. For robustness, we present below an estimation including ψ among

the parameters to estimate.

Our log-linearized model can be represented in state-space form. The infor-

mation structure in this model is identical to the one used in BLL, and more

details are provided there on how to compute the likelihood function for a gen-

eral representative-agent model with signal extraction.16 The main idea is first

to solve the consumer’s Kalman filter to obtain the dynamics of consumer’s ex-

pectations, and next to build the econometrician’s Kalman filter, including in

the list of unobservable state variables the consumer’s expectations. The model

can then be estimated through Maximum Likelihood (ML).

We follow Aguiar and Gopinath (2007), and thus in our baseline estimations

we include the demeaned first differences of the logarithm of labor productivity

15In this case our sample length is restricted by the fact that there are no quarterly data on GDP
components before the end of World War I in 1918.

16See Appendix 5.1 of BLL.
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∆at and the demeaned ratio of net exports-to-GDP nxt as observable variables.

Using consumption instead of net exports did not change the results.

3.2 Great Recession

Here we present our baseline estimates for the Great Recession.

Table 1 contains the parameter estimates. The persistence parameter ρ is

estimated at 0.97, implying very persistent processes both for the permanent

and the transitory components of productivity. The standard deviation of pro-

ductivity is estimated at 0.64% in the case of the Great Recession. Given

the random walk assumption (6) for productivity, the high values of ρ imply

a standard deviation for permanent technology shocks that is fairly small, of

0.02%, and a fairly big standard deviation for the transitory technology shock,

of 0.63%. The standard deviation of noise shocks is large, 7.39%.

Although it may seem like a natural comparison, it is in fact misleading

to compare the standard deviation of noise shocks (7.39%) to the standard

deviation of permanent shocks (.02%). The reason is that the signal is about the

permanent component xt itself, and not about the shock εt (equation 7). This

has two (somewhat subtle) implications for the interpretation of the estimates.

First, even though the shocks are estimated to be small, they are also very

persistent, and this results as in considerable volatility in xt. Second, this

permanent component is hit by a permanent shock every quarter, and previous

shocks are not revealed to the agent in real time. This introduces substantial

uncertainty in the learning process. A useful quantifier is provided by the one-

step ahead uncertainty in the inference about xt at time t,
√
V art−1(xt), which

is given by the solution to the Kalman filter. For the estimates shown in Table

1 this computation results in
√
V art−1(xt) = 1.40%, which is of the same order

of magnitude as σν . Even though the signal is fairly imprecise, the agent’s

uncertainty is also large, and therefore the signal is not disregarded by the

agent.

Notice also that permanent shocks to productivity are small compared to

transitory shocks. This implies that, conditional on having observed the previ-

ous period’s productivity at−1, current productivity at is also a fairly imprecise

signal about xt. To sum up, this discussion illustrates the major signal extrac-

tion problem that consumers face according to our estimation. Accordingly,

the delay in learning is quite long, computed to 5.25 years for the parameters

above.
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Table 1: Parameter Estimates, Great Recession

Parameter Description Value s.e.

ρ Persistence tech. shocks 0.97 0.01
σa Std. dev. productivity 0.64 0.04
σε Std. dev. permanent tech. shock (implied) 0.02 –
ση Std. dev. transitory tech. shock (implied) 0.63 –
σν Std. dev. noise 7.39 2.04

Notes: ML estimates of the log-linearized state-space representation of the model. The observation
equation is composed of the first differences of the logarithm of U.S. labor productivity and the ratio
of net exports-to-GDP. The sample is from 1990:Q1 to 2013:Q1. Standard errors are reported to the
right of the point estimate. The values for σε and ση are implied by the random walk assumption
(6) for productivity.

In this estimation there is no need to recur to Bayesian methods. In fact,

we hit a unique global maximum for the likelihood function. Next we provide

some intuition for the identification of these parameters.

3.3 Intuition for Parameter Identification

We now discuss the identification of the parameters. The derivation of all ex-

pressions discussed here and not presented previously can be found in Appendix

F (Supplementary Material).

The intuition for identification comes from considering (4), (5), and the

VAR representation of the limiting model (Proposition 1). This representation

is given by the following two equations

ĉt = ĉt−1 + uct (17)

at = ρat−1 +
C

Y
(1− ρ) ĉt−1 + uat , (18)

where uct and uat are innovations (from the perspective of the econometri-

cian). According to (17), consumption in the limiting model is a random walk,

which simply follows from the law of iterated expectations. Equation (18)

clarifies an interesting property of productivity in this model. Even though

productivity at was restricted by (4) and (5) to have a univariate random walk

representation, it is no longer a random walk in the bivariate representation,

i.e. when conditioning its expected changes on the past value of consumption

ĉt−1. The reason is as follows. Past consumption ĉt−1 carries extra information
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beyond the previous realization of productivity at−1 about the permanent com-

ponent xt. This information comes from the signal st−1 that consumers have

received which, due to the persistence of the permanent component, helps them

forecast its future path.

The parameter σa is identified by the standard deviation of the growth rates

of productivity ∆at. Identification of ρ comes from equation (18), which can

be estimated by OLS in the following form:

∆at = −(1− ρ)(at−1 − C/Y · ĉt−1) + uat . (19)

The intuition provided by equation (19) is closely related to the perma-

nent income hypothesis. Indeed, how much consumption deviates from current

productivity reflects beliefs of consumers about future income, i.e. BLR, and

by implication contains information about future changes in at.
17 The higher

is consumption with respect to current productivity at t − 1, the higher the

expected productivity growth at t. The coefficient in front of the productivity-

to-consumption ratio identifies ρ. If the permanent component is not very

persistent (ρ is low), its expected long-run level is close to its current level, and

the correlation between the ratio and productivity changes one quarter ahead

is high. Instead, when the permanent component is very persistent (ρ is high),

its expected long-run level is different from its current level, and the correlation

between the ratio has and productivity changes one quarter ahead is low. No-

tice, this does not reflect a failure of consumers to forecast trend productivity,

because at higher horizons the equation is

at+j − at = −(1− ρj)(at−1 − C/Y · ĉt−1) + uat+j , (20)

and thus for long horizons (high j) the coefficient in front of the ratio

goes to -1. In other words, the longer the horizon, for a given variance of

the productivity-to-consumption ratio, the higher the correlation between the

productivity-to-consumption ratio and trend productivity. Notice also that

these equations are valid for any degree of noise in the signal. In particular, the

relationship between trend productivity and the productivity-to-consumption

ratio (19) holds on average and takes into consideration the extra volatility of

the ratio coming from the noise in the signal.18

17Similar to Campbell (1987) the consumer “saves for a rainy day”, i.e., negative ĉt−1 predicts low future
productivity growth ∆at.

18Notice that in the model productivity follows a random walk, and therefore productivity by itself is
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Having identified ρ, the sizes of the permanent and transitory shocks σε and

ση can be derived from

σε = (1− ρ)σa

ση =
√
ρ · σa ,

which follow from (4), (5) and (6).

It remains to discuss the identification of the standard deviation of noise

shocks, σν . This is determined by the correlation between innovations to con-

sumption uct and innovations to productivity uat . If the signal is not informative

(σν −→ ∞), the only information available to consumers is productivity itself,

and this correlation is 1. If the signal is perfectly informative (σν −→ 0), this

correlation attains a lower bound.19 The relation is monotonic and uniquely

pins down σν .

To sum up, first we have discussed how the permanent income hypothesis

together with rational expectations help us decompose the productivity series

into a permanent component and a transitory component. This is translated

into parameters ρ, σε, and ση that define the decomposition. The data favors a

decomposition of productivity with a very smooth permanent component, with

small and highly persistent permanent shocks that have large effects in the long

run. Interestingly, these results are connected to the influential finance litera-

ture on risks for the long run (Bansal and Yaron 2004), in which a key ingredient

is the presence of a small but persistent growth rate component. Second, we

have discussed how our procedure pins down the accuracy of consumers’ in-

ferences. This leads to an estimate for σν . Consumption innovations seem on

average fairly disconnected from productivity innovations in (17), which leads

to estimating a significant amount of noise.20

not useful to identify ρ.
19See BLL for the computation of this bound.
20It would have been possible to estimate the model using the relationships above. However, we decided

to use ML instead because it does not require assuming the conditions of Proposition 1 hold exactly, and
it should be able to extract more information from the data.
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3.4 Variance Decomposition and Estimated Permanent

Shocks

Figure 2 shows the variance decomposition of BLR in the estimated model

at different horizons. At short horizons, the forecast error of BLR is mostly

accounted for by both transitory noise and shocks, and the opposite holds at a

medium horizon (after, say, 7 years). Given our emphasis on the medium run,

we focus on the effect of permanent shocks throughout the paper.

Figure 2: Variance Decomposition of BLR at Different Horizons
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The state-space representation of the estimated model can be used in order

estimate the shocks and states of the model using a Kalman smoother. Figure

3 shows our estimated permanent technology shocks for the case of the Great

Recession.21 We estimate positive shocks in the early 1990s, up to 1998, and

negative shocks in the second part of the sample. Notice that the serial correla-

tion of our estimated permanent shocks is not a violation of the i.i.d. assumption

in the model, but instead purely a reflection of the information available to the

econometrician. Given the small size of permanent shocks, it difficult to the

econometrician to pin point with precision the quarter when each particular

shock hits. This introduces an estimation error that it autocorrelated, and the

smoothed shocks turn out autocorrelated as well. This has implications for the

interpretation of the estimated series. Indeed, there is fairly strong evidence in

the data of either a large positive shock or several positive shocks somewhere in

the early 90s, although it is not possible to know exactly when. The opposite

21For brevity we do not show the estimated transitory and noise shocks here, see the Supplementary
Material.
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holds starting 1998.22

Figure 3: Smoothed Permanent Shocks (U.S., 1990–2013)
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Notes: Shocks estimated using a Kalman smoother on the U.S. 1990–2013 sample. The
data is composed by the first differences of the logarithm of labor productivity and the
ratio of net exports-to-GDP. The unit on the y-axis is percentages. Shocks are scaled
by their ML estimated standard deviation.

The estimated permanent shocks in our sample imply that we should have

observed a productivity acceleration in the mid-90s, and a subsequent slow-

down, arriving some years before the start of the Great Recession. This can

be verified by evidence outside our exercise. For instance, in an impressive

paper, Fernald (2012a) documents detailed evidence, at different levels of ag-

gregation, that the growth of both labor and total-factor productivity slowed

down after 2004 in most industries.23 The slow down was most pronounced in

IT-intensive industries.24 Consistent with our structural results, we find simi-

lar evidence when looking only at annualized productivity growth rates in our

sample. These are on average 1.93% from the first quarter of 1990 to the first

quarter of 2004 on a yearly basis, and 1.12% from the second quarter of 2004

to the first quarter of 2013.25

22We have verified that Kalman smoothed shocks out of simulated data have a similar degree of auto-
correlation.

23See Fernald’s Figure 3 (March 24, 2014 version) for a plot of aggregate trend productivity.
24See Fernald’s Table 1 (March 24, 2014 version).
25On its special report on the world economy, The Economist also documented a slowdown of GDP per

hour worked in the U.S. that started around 2001 (Figure 12). (with data available Oct. 7th 2010)
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3.5 Model-predicted Beliefs About the Long Run and

Out-of-sample Check

Now we characterize the medium-run dynamics of BLR. For external validity,

we compare our results to out-of-sample evidence coming from a survey.

We proceed by a standard historical decomposition as follows. We feed into

the model the series of estimated permanent shocks shown in Figure 3, setting

the other two shocks ηt and νt to zero. We then simulate the associated BLR

using our model. Figure 4 shows the resulting BLR. According to this series,

the U.S. was relatively most optimistic about his long-run income around 2004.

Notice here the impact of the delay in learning. Even though the positive εt

are estimated to hit the U.S. economy around 1995, it takes quite some time

for the agent to become optimistic. In fact, according to our results the agent

is most optimistic right when productivity started to slow down, and it also

took some time to revise its beliefs downwards. In this model, this decline in

beliefs produces a fall in consumption. In a model with elastic labor supply and

nominal rigidities this decline would result in a fall in output (see BLL.)26

Figure 4: Model-predicted BLR (U.S., 1990–2013)
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Notes: Historical effect of permanent shocks on BLR.

Consensus Forecasts publishes a survey including a question of participants’

expectations of GDP growth up to 10 years ahead. The survey is done in

major industrialized economies27, and this is the longest horizon available in

the survey. Figure 5 reproduces from Hoffmann, Krause, and Laubach (2011),

26Jaimovich and Rebelo (2008) propose other alternatives to produce comovement in open economy
models.

27The countries included are the U.S., Japan, Germany, France, the U.K., Italy, Canada, China, Korea
and Taiwan.
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(p. 6) a series of GDP weighted average answers of these Forecasts of real

GDP growth 6–10 years ahead (upper panel, top series, marked with a ‘+’), a

series of U.S. answers of these Forecasts (upper panel, bottom series, marked

with an ‘x’), and the difference of these Forecasts between the U.S. and the

Rest-of-the-World (RoW, bottom panel, unique series, marked with an ‘x’).

Given that on average the RoW was more optimistic about domestic growth

than the U.S., the series on the bottom is negative. This is consistent with the

higher average growth rate of countries like China, Korea and Taiwan. From

the perspective of our exercise, we are interested in the relative evolution of

trend-growth expectations in the U.S. versus the RoW, i.e. the evolution of the

series in the bottom panel (unique series, marked with an ‘x’).

Figure 5: Survey Evidence on Long-run Growth Forecasts, U.S. versus RoW (Lower Panel)

Notes: Reproduced from Hoffman et al. (2011). The upper panel plots the weighted average response in
a sample of major industrialized countries countries (Japan, Germany, France, the U.K., Italy, Canada,
China, Korea and Taiwan, upper panel, top series, marked with a ‘+’), and the average response in the
U.S (upper panel, bottom series, marked with an ‘x’). The lower panel plots the difference between the
two (unique series, marked with an ‘x’).

Figure 6 compares the evolution of trend-growth expectations according to

the survey (the bottom panel of Figure 5) and BLR about the long run generated
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by our estimated model. In the upper panel we plot our beliefs series, aligning

the time axis to the Hoffmann et al. (2011) series. A qualitative comparison

between the two series suggests that according to both measures the U.S. agent

seems to have been relatively most optimistic between 00 and 05.28

Figure 6: Out-of-sample Check: Comparison of Model-predicted BLR from Figure 4 (Upper
Panel) and Survey Evidence on Long-run Growth Forecasts (Lower Panel)

Notes: The survey data is reproduced from Hoffman et al. (2011), see Figure 5.

3.6 Robustness

To assess the robustness of the estimates presented previously and the implied

delay, here we report the results of a number of alternative robustness estima-

tions. We explore the implications of alternative sample spans, alternative set

of observables, and alternative model specifications (i.e. using the limit model

suggested by Proposition 1).

28In Subsection 3.3 of their paper, Hoffmann et al. (2011) perform a similar exercise by computing a
Kalman filtered trend of productivity and comparing it to the sample. Their exercise and ours complement
each other. The most important difference is our use of both productivity and net exports – following the
permanent income logic mentioned previously – while they use only productivity (of course not imposing
the random walk Assumption 6). Another difference is our computation of the variance decomposition for
BLR and focus on permanent shocks for getting at their model-implied medium-run dynamics.
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More specifically, first we report in Table 2 the baseline estimation (1.),

using the 1990–2013 sample, U.S. data, where observables are labor productivity

and net exports. To investigate whether our estimates rely crucially on the

sample span of our baseline estimation, we change the sample span to a 1985–

2013 sample (2.), to a 1980–2013 sample (3.), and to the full 1948–2013

sample (4.). In these three estimations we obtain similar parameter estimates

(highly persistent technology processes and relatively large noise), implying

large delays. In 4. the delay is particularly large (9.75 years). Numerical

exercises on the mapping from parameters to the delay suggest that the reason

is the even higher estimate of ρ in this case. One issue with this estimation are

the low frequency changes in the trend of productivity over this long sample,

which is why we feel more confident with our baseline, which does not suffer

from this caveat.

Table 2: Robustness

Estimation ρ σa σν ψ Delay

1. Baseline 1990–2013 sample 0.9720
(0.0057)

0.6433
(0.0446)

7.3922
(2.0451)

0.0010 5.25

2. 1985–2013 sample 0.9737
(0.0046)

0.6183
(0.0390)

6.2959
(1.7023)

0.0010 5.50

3. 1980–2013 sample 0.9777
(0.0034)

0.7020
(0.0415)

9.0652
(2.1890)

0.0010 6.50

4. Full 1948–2013 sample 0.9893
(0.0010)

1.0999
(0.0544)

10.6144
(3.2643)

0.0010 9.75

5. Estimating ψ 0.9659
(0.0099)

0.5604
(0.0382)

10.0022
(2.4024)

0.0001
(0.0002)

4.75

6. TFP 0.9739
(0.0056)

0.6918
(0.0483)

9.3421
(2.4848)

0.0010 6.00

7. Consumption (limit model Prop. 1) 0.9736
(0.0073)

0.5254
(0.0303)

2.0509
(0.6153)

−→ 0 3.75

Notes: To assess the robustness of the estimates, this table presents several ML estimates changing the time-
span of the sample, the set of observables, and the exact model specification. Standard errors are reported in
parenthesis below the point estimate. The values of σε and ση are computed using ρ and σu through the random
walk assumption (6). The delay was defined in p. 9. For estimation 7., we set C/Y = 1. All estimates are for
the U.S.

We then estimate ψ (5.) as well, in order to check that our baseline cali-

bration (in which we follow the literature) is consistent with the data. We find

that the data favor an even smaller value of ψ than the one adopted throughout

the paper. This suggests that the assumptions of Proposition 1 are empirically

valid.

We then investigate how a different set of observables changes our results.

First, we estimate the model using the logarithm of TFP (6.), using Fer-
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nald’s utilization-adjusted series in first differences (Fernald 2012b).

We find similar results to 1. Second, we estimate the model using the first

differences of the logarithm of consumption (7.), using the exact expression

for consumption derived in Proposition 1. We find a smaller delay of learning,

but still important, of 3.75 years.29

To sum up, over a range of estimation exercises we obtain similar results for

our parameter estimates ρ, σa, and σν . The estimates for ρ are quite stable at

high values, suggesting a smooth and persistent permanent component. Not

surprisingly, the estimates for σa and σν change across samples due to changes

in the variance of productivity and net exports (consumption) across these

samples, but in all cases we obtain a large standard deviation of noise shocks

σν , when compared to σa. Finally, the delay is computed to be strictly positive30

and sizeable in all cases.

3.7 Japan and Great Depression

Here we present our baseline results for the case of Japan (1975–2005) and the

Great Depression in the U.S. (1920–1935).

Table 3 contains the parameter estimates. The persistence parameter ρ is

estimated at 0.94 in the case of Japan, and at 0.86 in the case of the Great

Depression. Both values imply persistent processes both for the permanent and

the transitory components of productivity. The standard deviation of produc-

tivity is estimated at 1.00% in the case of Japan, and at 1.66% in the case of the

Great Depression. These values are considerably larger than the ones obtained

for the Great Recession. Given the random walk assumption (6) for productiv-

ity, these values imply a standard deviation for permanent technology shocks of

0.06% in the case of Japan, and of 0.24% in the case of the Great Depression,

and a standard deviation for the transitory technology shock of 0.97% in the

case of Japan, and of 1.53% in the case of the Great Depression. The standard

deviation of noise shocks is large, 14.49% and 20.05% respectively.

The standard deviations of all shocks and, in particular, the noise shock are

larger in both cases than in the Great Recession. However, the overall amount

of noise in the news agents receive – quantified by the delayed learning – is

actually smaller. This delay is of 2.50 years in the case of Japan, and of 1

29In the estimations of the limit model we set C/Y = 1.
30Perfect information is a special case of this model when σν = 0, in which the delay is equal to zero.

The estimation tells us that this case fails to fit the data.
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Table 3: Parameter Estimates, Japan and Great Depression

Japan Great Dep.
Parameter Description Value s.e. Value s.e.

ρ Persistence tech. shocks 0.94 0.02 0.86 0.05
σa Std. dev. productivity 1.00 0.06 1.66 0.15
σε Std. dev. permanent tech. shock (implied) 0.06 – 0.24 –
ση Std. dev. transitory tech. shock (implied) 0.97 – 1.53 –
σν Std. dev. noise 14.49 3.50 20.05 8.06

Notes: ML estimates of the log-linearized state-space representation of the model. The observation equation is composed
of the first differences of the logarithm of labor productivity and the ratio of net exports-to-GDP. In the case of Japan,
the sample spans 1975–2005. In the case of the Great Depression, the sample spans 1920–1935 (due to data availability
it does not start earlier). Standard errors are reported to the right of the point estimate. The standard deviations of
the permanent and transitory shocks are implied by the random walk assumption (6) for productivity.

year in the case of the Great Depression. It is difficult to analyze the mapping

between the parameter values to the delay, but from numerical exercises it

seems that the main reason the delay is smaller here is that in both cases, and

especially in the case of the Great Depression, the value of ρ is smaller, implying

a less persistent permanent technology process and, through Assumption (6),

larger and easier to detect permanent shocks. It is not quite surprising that we

estimate a smaller delay in these two cases, since as the plots in Section 4 below

show, consumption seems to have reacted a bit less slowly in these two cases.31

The variance decomposition for these cases are similar to the one shown in

Figure 2 and for brevity we do not show them. Figure 7 plots the estimated

permanent shocks. As for the Great Recession, we estimate positive shocks

in the first part of the two samples, and negative shocks later on. In the

case of Japan, the positive shocks hit roughly between 1980 and 1987. This

estimated permanent shocks imply that we should have observed a productivity

acceleration and deceleration. Consistently, Japanese annualized growth rates

of productivity averaged to 3.22% between 1975 and 1990, and 1.14% from then

on. In the case of the Great Depression, the positive shocks hit roughly between

1920 and 1922, the negative shocks roughly between 1926 and 1932, and then

again positive shocks hit starting 1932, probably related to the strong economic

recovery that started around 1933. In the later case our sample does not seem

to start early enough (due to data availability) to appreciate the full extent of

31Specifically, the distance between the peak and the through of the productivity-to-consumption ratio
is smaller in Japan and Great Depression (11 and 9 years) when compared to the Great Recession (15
years).
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the productivity pickup related to the 2nd Industrial Revolution, because the

range that mostly contains positive shocks is rather short. Looking at the dates

in which some of the technological innovations were implemented – for instance

the Ford Model-T was introduced in 1908 – suggest that one would like to have a

reliable sample for quarterly consumption and productivity starting at least 10

years before 1920. Still, starting in 1920 captures some of the trend productivity

increases of the period. Consistently, annualized productivity growth rates for

the U.S. economy average 2.75% between 1920 and 1925, and drop to -.48%

between 1925 and 1933. Productivity growth recovers later, between 1933 and

1935, to 4.59%.32

Figure 7: Smoothed Permanent Shocks (Japan 1975–2005, and U.S. 1920–1935)
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Notes: Shocks estimated using a Kalman smoother on the Japanese 1975–2005 sample,
and on the U.S. 1920–1935 sample. The latter is restricted by data availability. The
data is composed by the first differences of the logarithm labor productivity and the
ratio of net exports-to-GDP. The time unit on the x-axis is percentages. Shocks are
scaled by their ML estimated standard deviation.

Figure 8 plots the model-predicted BLR for Japan and the Great Depres-

sion. Even though the positive shocks seem to have hit the Japanese economy

mostly in the mid-1980s, consumers there seem to have been most optimistic

around 1990. In the case of the Great Depression, the consumer is most opti-

mistic around 1923, which implies a shorter delay with respect to the positive

permanent shocks. The reason is the smaller delay in learning.

32Productivity growth rates seem to have been high for a number of years during the recovery from the
Great Recession, a fact noted by Field (2003), among others.
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Figure 8: Model-predicted BLR (Japan 1975–2005, and U.S. 1920–1935)
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Notes: Historical effect of permanent shocks on BLR.

To sum up, even though the exact measure of the delay varies from episode

to episode, we do find structural evidence of this delay also in the cases of Japan

and the Great Depression. There is also evidence of an increase in the trend

of productivity, followed by a decrease in this trend. To shed light at these

and other facts, the next section looks directly at the ratio of productivity-to-

consumption.

4 The Productivity-to-Consumption Ratio in

the Data

In order to understand which feature of the data deliver the results above, here

we focus on the shape of the productivity-to-consumption ratio in the three

cases. As explained above, this ratio contains information about consumers’

beliefs about their future income according to the permanent income hypothesis.

We do not detrend any of these series for these plots.

Great Recession. Figure 9 plots the logarithm of the ratio of productivity-

to-consumption around the Great Recession (U.S. 1990–2013). The vertical

axis is centered around the average of the ratio over the period considered. The

trend of this series computed using an HP-Filter (λ = 800) is also plotted. Using
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a band pass filter isolating the medium-run frequency of this series (between 32

and 200 quarters, following Comin and Gertler 2006) delivers a similar shape

for this trend.

Figure 9: Productivity-to-consumption ratio, in logs (U.S., 1990–2013), and Trend

Notes: Productivity is real GDP divided by employment. Consumption is NIPA consumption divided by popu-
lation. Neither series is detrended. The trend is computed with an HP-Filter (λ = 800).

As the figure shows, the ratio has relatively high values at the start of this

time window, with a slight increasing portion between 1990 and 1992. This

is because during this period productivity is growing at a higher rate than

consumption. The ratio starts declining around 1992, and this decline becomes

more dramatic starting in 1997, where consumption grows at a considerably

stronger rate than productivity. The ratio reaches its lowest point around 2007,

after which a reversal starts in which the ratio quickly goes back to its level

from 20 years earlier. The reversal is quite sharp and coincides with the start of

the Great Recession in 2007. Overall, the ratio appears to follow a slow-moving

“up-and-down” wave.

To shed light on these dynamics, it is useful to considered two theoretical

benchmarks.

Benchmark (a): “No-news”. In this case, σν tends to infinity and thus

the signal is completely uninformative. Given the random walk assumption

(6), BLR are

xt+∞|t = at ,

and so, under the conditions of Proposition 1, consumption is equal to pro-
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ductivity:

ct = at, ∀t .

Thus, the ratio of productivity-to-consumption is flat. As illustrated by

Figure 10 (left panel), this clearly fails to fit the data.

Figure 10: Benchmarks for the Productivity-to-consumption Ratio

(a) No-news (b) Perfect Foresight

Notes: Ratio for the U.S. 1990–2013, HP-filter trend (λ = 800), and theoretical benchmarks.

Benchmark (b): Perfect Foresight. Under perfect foresight, agents have

knowledge of all future shocks right from 1990:Q1. Under the conditions of

Proposition 1, consumption jumps immediately to the long-run level of pro-

ductivity, say xt+∞, and remains there. As a result of the positive and then

negative permanent shocks, productivity first increases and then decreases, and

then stays there. The ratio of productivity and consumption, thus, has the same

dynamics: it increases, then decreases, and then stay there. As illustrated by

Figure 10 (right panel), this, again, fails to fit the data.

To conclude, in both the “no-news” and the perfect foresight benchmarks,

the model has a strongly counterfactual prediction for the behavior of the

productivity-to-consumption ratio. Indeed, in the data, the ratio finishes in

a U-shaped motion. As explained above, noisy signals (σν > 0 but finite) im-

ply a delay in learning that helps accommodate this behavior of the ratio, i.e.

its decline as consumption catches up with the productivity increase, and rise

when consumption growth slows down.

Japan. Figure 11 plots the same ratio for Japan. In this case we can see a

more gradual increase in the ratio from its average over the period considered,

29



Figure 11: Productivity-to-consumption ratio, in logs (Japan, 1975–2005), and Trend

Notes: Productivity is real GDP divided by employment. Consumption is NIPA consumption divided by popu-
lation. Neither series is detrended. The trend is computed with an HP-Filter (λ = 800).

reaching a peak in 1985. From this point on, the average growth rate of con-

sumption is higher than the growth rate of productivity, and therefore the ratio

decreases up to 1994. The lowest point of the ratio is reached in 1997, after

which an upward movement brings the ratio back to its level in 1975, suggesting

that similar to the previous case, the ratio followed a slow-moving up-and-down

wave.

Great Depression. Figure 12 plots the ratio for the Great Depression. Due

to data availability, we look at this data starting 1920. However, the ratio in

this case seems to follow a similar “wavy” pattern as in the two previous figures.

It starts at high values, then decreases, reaches a lowest point at the onset of

the Great Depression in 1929, and then reverts back to its level of 14 years

before.

To summarize, this reduced-form analysis complements the results obtained

through structural estimation. In the three cases considered, the productivity-

to-consumption ratio appears to follow similar medium-term dynamics. To-

gether with the evidence on productivity growth rates presented in Section 3,

the overall conclusion is that in the three cases there was a slow-moving boom

of aggregate productivity, followed by a slowdown. Furthermore, consumption

features similar dynamics, but adjusts with a significant lag.33

33Flemming and L’Huillier (2014) briefly analyze the relationship of the productivity-to-consumption
ratio to new assets agency issuance (MBSs and CMOs) and find a positive correlation between the two.
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Figure 12: Productivity-to-consumption ratio, in logs (U.S., 1920–1935), and Trend

Notes: Productivity is real GDP divided by employment. Consumption is NIPA consumption divided by popu-
lation. Neither series is detrended. The trend is computed with an HP-Filter (λ = 800). The sample starts in
1920 due to data availability.

5 Characterization of the Dynamics of Debt

In this section we study the model-predicted dynamics of debt, that is, the

dynamics implied by the estimated permanent shocks shown in Figure 3. For

brevity, we do this only for the case of the Great Recession.34

Figure 13 plot these dynamics. The left panel shows productivity, the center

panel shows net exports and the right panel shows the debt-to-output ratio.

Vertical axes are percentage deviations for steady state. Productivity increases

and then decreases, the peak happening in the early 2000s. Net exports are first

slightly positive, then turn negative, and turn positive around 2008. When net

exports are negative the economy accumulates debt, with the debt-to-output

ratio reaching its highest point around 2008.35

The dynamics of debt are determined by three elements. First, they depend

on the persistence of the technology process ρ, because it governs the size of

the income effect. The higher ρ, the larger the long-run effect of a shock εt,

and the larger the income effect. The larger the income effect, the larger the

accumulation of debt. Second, the dynamics of debt depend on the relative

size of the standard deviations σε, ση, and σν , because these determine the

34It is possible to write a closed economy model with borrowing and lending based on Iacoviello (2005)
or Iacoviello and Pavan (2013) that features the same information structure. However, given our emphasis
on permanent income consumption, a characterization of debt dynamics in such a framework is out of the
scope of this paper.

35A close inspection of equation (16) reveals that changes of debt away from the steady state are slightly
persistent, which is why the ratio starts declining a bit after net exports turn positive.
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Figure 13: Model-predicted Productivity, Net Exports, and Debt-to-output Ratio
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Notes: Historical effect of permanent shocks on productivity at, the net exports-to-
output ratio nxt, and the debt-to-output ratio bt. On the left panel, vertical axis’ units
are relative percentage deviations from the steady state. On the mid- and right panels,
vertical axes’ units are absolute percentage deviations from the steady state.

informativeness of at and st as signals about the permanent component xt, and

thus the speed of learning. The smaller σε with respect to the other two, the

less informative at and st, the slower learning, and the longer it takes for beliefs

and consumption to adjust. Third, the dynamics are also determined by the

timing of the positive and negative shocks. Suppose there is only one positive

and only one negative shock, of same size, and that they hit one after the

other in two consecutive quarters. In this case, the effect of the shocks in the

economy would be virtually nil. As shocks spread out, they can have an effect

in the economy, in particular, agents can be optimistic when the negative shock

hits. In the opposite extreme, if the negative shock never hits, agents are never

“surprised”.

We stop this simulation in 2010 to make the following qualitative point. At

this point the state of the U.S. economy has three adverse features: high debt,

low productivity growth, and pessimistic expectations. Debt is high because it

took some time for agents to recognize the productivity slowdown of the early

2000s. Productivity growth is low because of the negative permanent shocks

that hit the economy after 1998. Expectations are pessimistic because agents

have learnt about the decline in the trend of productivity. The latter of these

ingredients implies deleveraging. Given the medium-run perspective of our
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exercise, it is interesting to quantify the length of the deleverage by simulating

the model forward from 2010, assuming all shocks are equal to zero after the

end of our sample (2013:Q1). Figure 14 shows the results. According to this

simulation, it would take 7 years after 2010 for the debt-to-output ratio to return

to steady state. Of course, the model is too simple to take this quantitative

prediction seriously, for instance, the aggressive monetary easing after 2008

is not taken into account, among other factors. But, at least qualitatively,

the medium-run nature of the deleverage predicted by these results is quite

suggestive.

Figure 14: Simulation of the Debt-to-output Ratio After 2010
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Notes: Model-produced forecast of bt assuming all shocks after 2013 (the
end of our sample) are zero.

6 Conclusion

We have explored the movements of productivity and consumption before and

during the Great Recession, the Japanese crisis of the 1990s, and the Great

Depression. In the three cases, productivity and consumption feature common

medium-run dynamics which can be accommodated by a learning model.

Our inference is based on the permanent income logic together with ratio-

nal expectations (Blundell and Preston 1998; Blundell, Pistaferri, and Preston

2008). It allows us to see through the medium-run dynamics of productivity

and consumption by using structural estimation. We find similar results by

looking at the data directly in reduced form.

The model features noisy news about the future. In the model, an ex-

ogenous process for productivity is the sum of a permanent and a transitory
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component. The decomposition is estimated by the observation of consumption,

which by the permanent income hypothesis is determined by beliefs about long-

run income. Having performed the decomposition of productivity, we find that

consumers seem to form their beliefs with a delay. This delay accommodates

an observed lagged behavior of consumption with respect to movements in the

permanent component of productivity. We find the predictions of the model

intuitive, and capable to provide a simple account of the behavior of consump-

tion in these episodes. Altogether, this is also a useful exercise to understand

the build-up of debt and the deleveraging process in the three cases.
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A Beliefs About the Long Run

Proof. To prove (8), we make use of equations (1), (2), and (3):

Et [at+τ ] = Et [xt+τ + zt+τ ] .

It follows that

Et [xt+τ ] = Et

[
xt +

τ−1∑
τ ′=1

(xt+τ ′+1 − xt+τ ′)

]

= Et

[
xt +

τ−1∑
τ ′=1

{
ρτ
′+1 (xt − xt−1) +

τ ′∑
τ ′′=1

ρτ
′′
εt+τ ′′

}]

= Et

[
xt + (xt − xt−1)

τ−1∑
τ ′=1

ρτ
′+1

]

where the last inequality comes from the fact that Et [εt+τ ′′ ] = 0 for all τ ′′ ≥ 1.

The geometric sum
∑τ−1

τ ′=1 ρ
τ ′+1 simplifies to ρ1−ρτ

1−ρ . So

Et [xt+τ ] = Et
[
xt + ρ

1− ρτ

1− ρ
(xt − xt−1)

]
.

Now taking the limit of τ to infinity and noticing that limτ−→∞ ρ
τ = 0 we obtain

lim
τ−→∞

Et [xt+τ ] = Et
[
xt + ρ

1

1− ρ
(xt − xt−1)

]
=

Et [xt − ρxt−1]

1− ρ
.

Similarly,

Et [zt+τ ] = ρτEt [zt] .

So

lim
τ−→∞

Et [zt+τ ] = 0 .

Combining the two limits for Et [xt+τ ] and Et [zt+τ ], we obtain equality (8).
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B Closed-form Solution and Limit Result for

Consumption

In this section we solve the model in closed form. Let

b̂t = bt +
1− C/Y

1− β
at .

From the intertemporal budget constraint (16), together with the budget con-

straint (15), we have:

b̂t = bt +
1− C/Y

1− β
at

=
1

β
bt−1 −

1

β

C

Y
(−ct) +

1

β

1− C/Y
1− β

(−∆at + βrt)

+
1− C/Y

1− β
at

=
1

β
b̂t−1 −

1

β

C

Y
(−ct) +

1

β

1− C/Y
1− β

(−at + βrt)

+
1− C/Y

1− β
at

=
1

β
b̂t−1 +

1

β

C

Y
ct −

1− C/Y
β

at +
1− C/Y

1− β
rt

Substituting rt from (14) into the last equality, and also using the definition of

ĉt, we arrive at

b̂t =
1

β
b̂t−1 +

1

β

C

Y
ct −

1− C/Y
β

at +
1− C/Y

1− β
ψbt

=
1

β
b̂t−1 +

1

β

C

Y
ct −

1− C/Y
β

at

+
1− C/Y

1− β
ψ

(
b̂t −

1− C/Y
1− β

at

)
=

1

β
b̂t−1 +

1

β

C

Y
ĉt −

1

β
at

+
1− C/Y

1− β
ψ

(
b̂t −

1− C/Y
1− β

at

)
.
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So

b̂t

(
1− 1− C/Y

1− β
ψ

)
=

1

β
b̂t−1 +

1

β

C

Y
ĉt

−

(
1

β
− ψ

(
1− C/Y

1− β

)2
)
at

From the Euler equation (13), we have

ĉt = −ψbt + Et[ĉt+1]

= −ψb̂t + ψ
1− C/Y

1− β
at + Et[ĉt+1] .

Again we conjecture that

ĉt = Dbb̂t−1 +DkXt ,

where the state variable Xt is defined in the proof above and solve for the

coefficients Db and Dk using the method of undetermined coefficients.

Indeed, from the Euler equation:

ĉt = −ψb̂t + ψ
1− C/Y

1− β
at + Et[ĉt+1]

= −ψb̂t + ψ
1− C/Y

1− β
at + Et[Dbb̂t +DkXt+1]

= (Db − ψ) b̂t + ψ
1− C/Y

1− β
at + E[DkXt+1]

= (Db − ψ)
1

1− 1−C/Y
1−β ψ

 1
β
b̂t−1 + 1

β
C
Y
ĉt

−
(

1
β
− ψ

(
1−C/Y

1−β

)2
)
at


+ψ

1− C/Y
1− β

at +DkAXt .

Where the second equality comes from applying the conjectured solution for

ct+1, the dynamics of shocks, and the formula for the Kalman filter presented

in BLL Appendix 5.1, from which we have

Et[Xt+1] = AXt ,
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where

A =


0 1 + ρ −ρ ρ

0 1 + ρ −ρ 0

0 1 0 0

0 0 0 ρ

 .

So (
1− (Db − ψ)

1

1− 1−C/Y
1−β ψ

1

β

C

Y

)
ĉt

= (Db − ψ)
1

1− 1−C/Y
1−β ψ

1

β
b̂t−1

− (Db − ψ)
1

1− 1−C/Y
1−β ψ

(
1

β
− ψ

(
1− C/Y

1− β

)2
)
at

+ψ
1− C/Y

1− β
at +DkAXt .

Comparing coefficient-by-coefficent to the initial conjecture of ĉt, we obtain the

system of equations on Db and Dk:

(Db − ψ)
1

1− 1−C/Y
1−β ψ

1

β
=

(
1− (Db − ψ)

1

1− 1−C/Y
1−β ψ

1

β

C

Y

)
Db

and

(Db − ψ)
1

1− 1−C/Y
1−β ψ

(
1

β
− ψ

(
1− C/Y

1− β

)2
)(

1 0 0 0
)

+

(
1− (Db − ψ)

1

1− 1−C/Y
1−β βψ

1

β

C

Y

)
Dk

= ψ
1− C/Y

1− β

(
1 0 0 0

)
+DkA

The first equation is a quadratic equation in Db:

D2
b +

(
1

C/Y
−
(

1− 1− C/Y
1− β

ψ

)
β

1

C/Y
− ψ

)
Db − ψ

1

C/Y
= 0 .
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This equation has two roots, but we pick the negative root to ensure the stability

of the dynamic system:

Db =
−
(

1
C/Y
−
(

1− 1−C/Y
1−β ψ

)
β 1
C/Y
− ψ

)
−
√(

1
C/Y
−
(

1− 1−C/Y
1−β ψ

)
β 1
C/Y
− ψ

)2

+ 4ψ 1
C/Y

2
.

Given Db, we solve for the coefficients Dk using the second equation. First, the

coefficient on at:

(Db − ψ)
1

1− 1−C/Y
1−β ψ

(
1

β
− ψ

(
1− C/Y

1− β

)2
)

+

(
1− (Db − ψ)

1

1− 1−C/Y
1−β ψ

1

β

C

Y

)
Dk,1

= ψ
1− C/Y

1− β

So

Dk,1 =

ψ 1−C/Y
1−β − (Db − ψ) 1

1− 1−C/Y
1−β ψ

(
1
β
− ψ

(
1−C/Y

1−β

)2
)

(
1− (Db − ψ) 1

1− 1−C/Y
1−β ψ

1
β
C
Y

) .

The coefficient on zt|t: (
1− (Db − ψ)

1

1− 1−C/Y
1−β ψ

1

β

C

Y

)
Dk,4

= ρDk,1 + ρDk,4

so

Dk,4 =
ρDk,1

1− (Db − ψ) 1

1− 1−C/Y
1−β ψ

1
β
C
Y
− ρ

.

The coefficients on xt|t and xt−1|t:(
1− (Db − ψ)

1

1− 1−C/Y
1−β ψ

1

β

C

Y

)
Dk,2

= (1 + ρ)Dk,1 + (1 + ρ)Dk,2 +Dk,3
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and (
1− (Db − ψ)

1

1− 1−C/Y
1−β ψ

1

β

C

Y

)
Dk,3

= −ρDk,1 − ρDk,2 .

So [
ρ+ x̃ 1

ρ 1− x̃

](
Dk,2

Dk,3

)
= −

(
1 + ρ

ρ

)
Dk,1

where x̃ = (Db − ψ) 1

1− 1−C/Y
1−β ψ

1
β
C
Y
. Thus

(
Dk,2

Dk,3

)
= − 1

(1− ρ− x̃) x̃

[
1− x̃ −1

−ρ ρ+ x̃

](
1 + ρ

ρ

)
Dk,1

= −Dk,1

x̃

1

(1− ρ− x̃)

(
1− x̃ (1 + ρ)

−ρ+ ρx̃

)
.

B.1 Limit Result

We provide the proof of Proposition 1 for two cases C/Y = 1 and C/Y 6= 1.

Proof of Proposition 1 when C/Y = 1. Given that C/Y = 1,

Db =
− (1− β − ψ)−

√
(1− β − ψ)2 + 4ψ

2

and

Dk,1 = − x

1− x

Dk,2 =
(1− x) (1 + ρ)− ρ
(1− x) (1− ρ− x)

Dk,3 = − ρ

1− ρ− x

Dk,4 =
Dk,1ρ

1− ρ− x

where x = (Db − ψ) 1
β
. We have limψ−→0Db = − (1− β) so limψ−→0

β−→1
Db = 0. At

the same time

lim
x−→0

(
Dk,1

Dk,4

)
= 0
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and

lim
x−→0

(
Dk,2

Dk,3

)
=

1

1− ρ

(
1

−ρ

)
.

In the end, the limit dynamics of consumption are

ĉt =
1

1− ρ
(
xt|t − ρxt−1|t

)
.

Proof of Proposition 1 when C/Y 6= 1. From the closed form expres-

sions, it is easy to verify that as β goes to 1 and ψ

(1−β)2
goes to 0: Db, Dk,1, Dk,4

go to 0 and

(
Dk,2

Dk,3

)
goes to 1

C/Y
1

1−ρ

(
1

−ρ

)
.

Notice, then, that the limit result requires that ψ goes to 0 faster than 1−β.

C A Two-country Open Economy Model

The model in Section 2 can be extended to two countries. For each variable

X of the home country, denote X∗ the corresponding variable for the foreign

country. The interest rate equation (11) is modified to:

Rt = R∗t + ψ
{
e
Bt
Yt
−b − 1

}
(21)

Let m and m∗ denote the population sizes of the home and foreign country

respectively.

An equilibrium is a set of choices {Ct, Nt, Bt, C
∗
t , N

∗
t , B

∗
t }
∞
t=0 and equilibrium

interest rates {Rt, R
∗
t}
∞
t=0 such that

mBt +m∗B∗t = 0

and the interest rate spread Rt −R∗t follows (21).

We assume that the two countries have the same steady state growth rate

so in steady state:

R = R∗ =
1

β
.

In the log-linearized version of this model, we replace the interest rate equa-
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tions for the home and the foreign countries, equation (14), by:

rt = r∗t + ψ · bt . (22)

Moreover, we need to add the linearization for the bond market clearing condi-

tions:

mbt +m∗b∗t = 0 . (23)

It is straightforward to show that Proposition 1 generalizes to this model.

Therefore, for the standard parametrization in the literature, our main results

can also be obtained in a two country model.

D Data Appendix

In the case of the Great Recession, the series for productivity is constructed

by dividing GDP by the labor input and taking logs. GDP is measured by tak-

ing the series for Real GDP from the Bureau of Economic Analysis (available

through the Federal Reserve Bank of Saint Louis online database). The labor

input is measured by the employment series (Bureau of Labor Statistics online

database, series IDs LNS12000000Q). The series for net exports is constructed

by dividing net exports by population. Net exports are measured by the differ-

ence between Real Exports and Real Imports from the St. Louis Fed database

(series IDs EXPGSC96 and EXPGSC96 respectively). Population is from the

BLS (series IDs LNS10000000Q). The series for consumption is constructed

by dividing Real Personal Consumption Expenditures by Population and tak-

ing logs. The series for Real Personal Consumption Expenditures is from the

St. Louis Fed database (series ID PCEC96). The series for TFP was down-

loaded from John Fernald’s website (“A Quarterly, Utilization-Adjusted Series

on Total Factor Productivity”, Fernald 2012b, supplement, series dtfp_util).

In the case of Japan, the series for productivity and net exports were

constructed in the same way. All series come from the OECD website. GDP,

Exports and Imports are contained in the measure named VOBARSA. Employ-

ment comes from the OECD website. It is published in monthly frequency, and

thus its frequency was changed to quarterly by computing the quarterly arith-

metic average at every quarter. Population comes from the ALFS Summary

tables in annual frequency, and thus a linear interpolation was performed to

obtain quarterly frequency data.
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In the case of the Great Depression, the series for productivity is con-

structed by dividing per capita GDP by the labor input and taking logs. The

labor input series was obtained from Kendrick 1961, Appendix A, Table XXIII,

2nd column (“Persons Engaged”). (Gordon 2000 uses the same measure.) The

series for net exports is constructed by the difference between exports and

imports. Per capita GDP, consumption, exports and imports were obtained

from Robert Gordon’s website.

Our data set is available upon request.
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E Normalization and Log-linearization

E.1 Steady State.

We look for a steady state in which the following variables (normalized and

non-normalized) are constant: c = C, b = B/Y , R, and Q. We assume that

the steady state level of normalized debt b is determined exogenously.36

From the intertemporal condition (12), we have

1

C
= βR

1

C+

,

where the subscript + is used to denote value one period ahead. Equiva-

lently, then

A

C
= βR

A

A+

A+

C+

.

Given that C/A = C+/A+ in the steady state, it implies that

1 = βR
A

A+

. (24)

Since A+ /A = 1,

36Aguiar and Gopinath (2007) make the same assumption.
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R =
1

β
.

The resource constraint (9) gives

C +B = Y +
1

R
B+ ,

or
C

A
+
B

Y

Y

A
=
Y

A
+

1

R

B+

Y+

Y+

A+

A+

A
.

So

c+ bN = N + βbN,

this implies

c = N (1− (1− β) b) .

E.2 Log-linearization.

We log-linearize the intertemporal condition

1

Ct
= βRtEt

[
1

Ct+1

]
,

to obtain (13). Log-linearizing the interest-elasticity equation (11) immediately

gives (14).

Approximating the resource constraint delivers

C

Y
(ct + 1) +

NX

Y
+ nxt = 1 ,

which leads to (15).

Net exports are

NXt = Bt−1 −QtBt ,

and therefore, approximating

NX

Y
+ nxt =

(
B

Y
+ bt−1

)
(−∆at + 1)− 1

R
(−rt + 1)

(
B

Y
+ bt

)
to obtain (16).
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F VAR Representation of the Limiting Model

In this section we derive (17) and (18). We know that

at − ρat−1 = xt + zt − ρ (xt−1 + zt−1)

= xt − ρxt−1 + ηt .

At the limit

ĉt =
1

C/Y

1

1− ρ
Et [xt − ρxt−1] .

Notice that

xt − ρxt−1 = xt−1 − ρxt−2 + εt ,

so

Et−1 [ĉt]

=
1

C/Y

1

1− ρ
Et−1 [Et [xt − ρxt−1]]

=
1

C/Y

1

1− ρ
Et−1 [xt − ρxt−1]

=
1

C/Y

1

1− ρ
Et−1 [xt−1 − ρxt−2 + εt]

=
1

C/Y

1

1− ρ
Et−1 [xt−1 − ρxt−2]

= ĉt−1 ,

and

Et−1 [at − ρat−1] = Et−1 [xt − ρxt−1]

=
C

Y
(1− ρ) ĉt−1 .

Therefore we have the VAR representation

ĉt = ĉt−1 + uct

at = ρat−1 +
C

Y
(1− ρ) ĉt−1 + uat .

Equation (20) is obtained by induction in j. We just showed it holds for
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Figure 15: Smoothed Transitory and Noise Shocks (U.S., 1990–2013)
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Notes: Shocks estimated using a Kalman smoother on the U.S. 1990–2013 sample. The
data is composed by the first differences of the logarithm labor productivity and the ratio
of net exports-to-GDP. The time unit on the x-axis is percentages. Shocks are scaled by
their ML estimated standard deviation.

j = 0. If it holds for j, then Et [at+j] = ρjat + C/Y · (1− ρj) ĉt. Taking

expectations at time t− 1 on both sides yields

Et−1[at+j] = ρjEt−1[at] + C/Y · (1− ρj)Et−1[ĉt]

= C/Y · (1− ρj)ĉt−1 + ρj(ρat−1 + C/Y · (1− ρ)ĉt−1)

= ρj+1at−1 + C/Y · (1− ρj+1)ĉt−1 ,

the second equality follows from (17) and (18), the third from rearranging.

G Estimated Temporary Productivity and Noise

Shocks

For completeness, in this section we report our estimated transitory and noise

shocks.

Figure 15 plots these shocks for the case of the Great Recession. In contrast

to the estimated permanent shocks shown in the body of the paper (p. 19),

transitory and noise shocks do not have any particular pattern. Figure 16 plots

these shocks for Japan and the Great Depression. Similarly, these shocks do

not have any particular pattern either.
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Figure 16: Smoothed Transitory and Noise Shocks (Japan 1975–2005, and U.S. 1920–1935)
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Notes: Shocks estimated using a Kalman smoother on the Japanese 1975–2005 sample, and on the
U.S. 1920–1935 sample. The latter is restricted by data availability. The data is composed by the first
differences of the logarithm labor productivity and the ratio of net exports-to-GDP. The time unit on
the x-axis is percentages. Shocks are scaled by their ML estimated standard deviation.
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